Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Yonsei Medical Journal ; : 407-413, 2019.
Artigo em Inglês | WPRIM | ID: wpr-742566

RESUMO

Although chronic obstructive pulmonary disease (COPD) is regarded as a chronic inflammatory lung disease, the disease mechanism is still not known. Intriguingly, aging lungs are quite similar to COPD-affected lungs in many ways, and COPD has been viewed as a disease of accelerated premature aging of the lungs. In this paper, based on a literature review, we would like to propose immunosenescence, age-associated decline in immunity, as a critical mechanism for the development of COPD. Immunosenescence can cause a low-grade, systemic inflammation described as inflammaging. This inflammaging may be directly involved in the COPD pathogenesis. The potential contributors to the development of inflammaging in the lungs possibly leading to COPD are discussed in the review paper. A notable fact about COPD is that only 15% to 20% of smokers develop clinically significant COPD. Given that there is a substantial inter-individual variation in inflammaging susceptibility, which is genetically determined and significantly affected by the history of the individual's exposure to pathogens, immunosenescence and inflammaging may also provide the answer for this unexpectedly low susceptibility of smokers to clinically significant COPD.


Assuntos
Envelhecimento , Senilidade Prematura , Imunossenescência , Inflamação , Pulmão , Pneumopatias , Doença Pulmonar Obstrutiva Crônica
2.
Immune Network ; : e11-2018.
Artigo em Inglês | WPRIM | ID: wpr-740201

RESUMO

The complement is a part of the immune system that plays several roles in removing pathogens. Despite the importance of the complement system, the exact role of each component has been overlooked because the complement system was thought to be a nonspecific humoral immune mechanism that worked against pathogens. Decay-accelerating factor (DAF or CD55) is a known inhibitor of the complement system and has recently attracted substantial attention due to its role in various diseases, such as cancer, protein-losing enteropathy, and malaria. Some protein-losing enteropathy cases are caused by CD55 deficiency, which leads to complement hyperactivation, malabsorption, and angiopathic thrombosis. In addition, CD55 has been reported to be an essential host receptor for infection by the malaria parasite. Moreover, CD55 is a ligand of the seven-span transmembrane receptor CD97. Since CD55 is present in various cells, the functional role of CD55 has been expanded by showing that CD55 is associated with a variety of diseases, including cancer, malaria, protein-losing enteropathy, paroxysmal nocturnal hemoglobinuria, and autoimmune diseases. This review summarizes the current understanding of CD55 and the role of CD55 in these diseases. It also provides insight into the development of novel drugs for the diagnosis and treatment of diseases associated with CD55.


Assuntos
Antígenos CD55 , Doenças Autoimunes , Proteínas do Sistema Complemento , Diagnóstico , Hemoglobinúria Paroxística , Sistema Imunitário , Imunoterapia , Malária , Parasitos , Enteropatias Perdedoras de Proteínas , Trombose
3.
Experimental & Molecular Medicine ; : e439-2018.
Artigo em Inglês | WPRIM | ID: wpr-914287

RESUMO

During mycobacteria infection, anti-inflammatory responses allow the host to avoid tissue damage caused by overactivation of the immune system; however, little is known about the negative modulators that specifically control mycobacteria-induced immune responses. Here we demonstrate that integrin CD11b is a critical negative regulator of mycobacteria cord factor-induced macrophage-inducible C-type lectin (Mincle) signaling. CD11b deficiency resulted in hyperinflammation following mycobacterial infection. Activation of Mincle by mycobacterial components turns on not only the Syk signaling pathway but also CD11b signaling and induces formation of a Mincle–CD11b signaling complex. The activated CD11b recruits Lyn, SIRPα and SHP1, which dephosphorylate Syk to inhibit Mincle-mediated inflammation. Furthermore, the Lyn activator MLR1023 effectively suppressed Mincle signaling, indicating the possibility of Lyn-mediated control of inflammatory responses. These results describe a new role for CD11b in fine-tuning the immune response against mycobacterium infection.

4.
Journal of Veterinary Science ; : 17-23, 2015.
Artigo em Inglês | WPRIM | ID: wpr-206917

RESUMO

Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.


Assuntos
Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Hidroxianisol Butilado/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Camundongos Endogâmicos ICR , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA